

PAB353Ge01

Polyclonal Antibody to Advanced Glycation End Product (AGE)

Organism Species: General

Instruction manual

FOR IN VITRO USE AND RESEARCH USE ONLY
NOT FOR USE IN CLINICAL DIAGNOSTIC PROCEDURES

9th Edition (Revised in Jul, 2013)

[PRODUCT INFORMATION]

Immunogen: AGE Purification: Affinity Chromatography.

Clonality: Polyclonal Applications: WB, ICC, IHC-P, IHC-F, ELISA

Host: Rabbit Concentration: 200µg/mL

Immunoglobulin Type: IgG UOM: 50μg

[IMMUNOGEN INFORMATION]

Immunogen: Protein AGE

Accession No.: NPB353Ge01

[RELEVANCE]

An advanced glycation end-product (AGE) is the result of a chain of chemical reactions after an initial glycation reaction. Glycation is accomplished by the Maillard reaction, which is a multistep process that begins with Schiff base formation between the amine and the carbonyl group on the sugar followed by rearrangement to form Amadori intermediates. AGEs affect nearly every type of cell and molecule in the body, and are thought to be one factor in aging and some age-related chronic diseases. BSA is glycosylated by the reaction of the glucose and BSA in vitro, and then being multistep purification, ending in high puified AGEs.

[ANTIBODY SPECIFITY]

The antibody is a rabbit polyclonal antibody raised against AGE. It has been selected for its ability to recognize AGE in immunohistochemical staining and western blotting.

[APPLICATIONS]

Western blotting: 1:50-400

Immunocytochemistry in formalin fixed cells: 1:50-500

Immunohistochemistry in formalin fixed frozen section: 1:50-500

Immunohistochemistry in paraffin section: 1:10-100 Enzyme-linked Immunosorbent Assay: 1:100-200

Optimal working dilutions must be determined by end user.

[CONTENTS]

Form & Buffer: Supplied as solution form in PBS, pH7.4, containing 0.02% NaN₃, 50% glycerol.

[STORAGE]

Store at 4°C for frequent use. Stored at -20°C to -80°C in a manual defrost freezer for one year without detectable loss of activity. Avoid repeated freeze-thaw cycles.